About the Cover: The new I-35W bridge, Minneapolis, Minnesota. Designed for the Minnesota Department of Transportation by FIGG, this new bridge incorporates aesthetics selected by the community using a theme of “Arches–Water–Reflection” to complement the site across the Mississippi River. Curved, 70’ tall concrete piers meet the sweeping parabolic arch of the 504’ precast, prestressed concrete main span over the river to create a modern bridge. The new 10-lane interstate bridge was constructed by Flatiron-Manson, JV and opened to traffic on September 18, 2008. The bridge was designed and built in 11 months. The bridge incorporates the first use of LED highway lighting, the first major use in the United States of nanotechnology cement that cleans the air (gateway sculptures) and “smart bridge” technology with 323 sensors embedded throughout the concrete to provide valuable data for the future. The photograph of the new I-35W bridge is courtesy of FIGG.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>V</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>74</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>129</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>181</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>239</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>260</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>290</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>299</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>325</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>378</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Grateful acknowledgment to Joe Davis, PhD, Rutgers University, for his input to the development of this edition’s Solutions Manual. Thanks are also due to Engineer Anand A. Bhatt, MS, Rutgers, for his input to the development of the previous edition’s Manual, part of which, not affected by the ACI 318 Code changes, is retained in this edition.
1.1. An AASHTO prestressed simply supported beam has a span of 34 ft (10.4 m) and is 36 in. (91.4 cm) deep. Its cross section is shown in Figure 14.18. It is subjected to a live-load intensity \(W_L = 3600 \) plf (52.6 kN/m). Determine the required 1-in.-diameter, stress-relieved, seven-wire strands to resist the applied gravity load and the self-weight of the beam, assuming that the tendon eccentricity at midspan is \(e_c = 13.12 \) in. (333 mm). Maximum permissible stresses are as follows:

\[
\begin{align*}
 f_c' &= 6000 \text{ psi (41.4 MPa)} \\
 f_c &= 0.45 f_c' \\
 &= 2700 \text{ psi (1862 MPa)} \\
 f_t &= 12 \sqrt{f_c'} = 990 \text{ psi (6.9 MPa)} \\
 f_{pu} &= 270,000 \text{ psi (1862 MPa)} \\
 f_{pi} &= 189,000 \text{ psi (1303 MPa)} \\
 f_{pe} &= 145,000 \text{ psi (1000 MPa)}
\end{align*}
\]

The section properties, given these stresses, are

\[
\begin{align*}
 A_c &= 369 \text{ in.}^2 \\
 I_g &= 50,979 \text{ in.}^4 \\
 r^2 &= \frac{I_g}{A_c} = 138 \text{ in.}^2 \\
 c_b &= 15.83 \text{ in.} \\
 S_b &= 3220 \text{ in.}^3 \\
 S' &= 7527 \text{ in.}^3 \\
 W_D &= 384 \text{ plf} \\
 W_L &= 3600 \text{ plf}
\end{align*}
\]

Solve the problem by each of the following methods:

(a) Basic concept
(b) C-line
(c) Load balancing

\[
\text{\bf SOLUTION:}
\]

\[
1.\text{ SOLUTION USING THE P-I METHOD:}
\]

\[
\text{\bf STRESS DATA:}
\]

- \text{Span} = 34 \text{ ft}
- \text{WL} = 3600 \text{ plf}
- \text{f}c' = 6000 \text{ psi}.
- \text{fc} = 0.45 f_c' = 2700 \text{ psi}.
- \text{ft} = 12 \sqrt{f_c'} = 930 \text{ psi}.
- \text{fpu} = 270,000 \text{ psi}.
- \text{fpi} = 189,000 \text{ psi}.
- \text{fpe} = 145,000 \text{ psi}.

\[
\text{\bf SECTION PROPERTIES:}
\]

\[
\begin{align*}
 A_c &= 369 \text{ in.}^2 \\
 I_g &= 50,979 \text{ in.}^4 \\
 r^2 &= I_g/A_c = 138 \text{ in.}^2 \\
 c_b &= 15.83 \text{ in.} \\
 S_b &= 3220 \text{ in.}^3 \\
 S' &= 7527 \text{ in.}^3 \\
 W_D &= 384 \text{ plf} \\
 W_L &= 3600 \text{ plf}
\end{align*}
\]
a) **Basic Concept:**

Assume that 10 \(\frac{1}{2} \) in. dia. seven wire strand tendons are used to pre-stress.

Initial Conditions at Prestressing:

\[
P_i = A_p s = 1.53 (189,000) = 289,170 \text{ lb.}
\]

\[
P_e = 1.53 (145,000) = 221,850 \text{ lb.}
\]

The mid-span self-weight dead-load moment is

\[
M_D = \frac{W L^2}{8} = \frac{384 (34)^2}{8} \times 12 = 665,856 \text{ in.-lb.}
\]

\[
N = \frac{P_i}{A_e} \left(1 - \frac{E_s e_f}{r^2} \right) - \frac{M_D}{S_e} = \frac{-289,170}{369} \left(1 - \frac{13.12(20.17)}{138} \right) - \frac{665,856}{252.7}
\]

\[
N = 456 \text{ psi} \text{ (C)}
\]

\[
f_b = \frac{P_i}{A_e} \left(1 + \frac{E_s e_f}{r^2} \right) + \frac{M_D}{S_b} = \frac{-289,170}{369} \left(1 + \frac{13.12(25.83)}{138} \right) - \frac{665,856}{3220}
\]

\[
f_b = -1756 \text{ psi} \leq f_c = -2880 \text{ psi} \text{ allowed.}
\]

Final Conditions at Service Load:

The mid-span moment due to live load is:

\[
M_L = \frac{w L^2}{8} = \frac{3600 (34)^2}{8} \times 12 = 6,242,400 \text{ in.-lb.}
\]

\[
M_T = 665,856 + 6,242,400 = 6,908,256 \text{ in.-lb.}
\]

\[
f_t = \frac{P_e}{A_e} \left(1 - \frac{E_s e_f}{r^2} \right) - \frac{M_t}{S_e} = \frac{-221,850}{369} \left(1 - \frac{13.12(20.17)}{138} \right) - \frac{6,908,256}{252.7}
\]
\[f_t^t = -2183 \text{ psi (CC)} < f_c = 2700 \text{ psi} \]

\[f_b = -\frac{P_e}{A_c} \left(1 + \frac{e \cdot C_b}{y^2}\right) + \frac{M_t}{y_b} = -\]

\[= -\frac{221,850}{369} \left(1 + \frac{13.12 \cdot (1.832)}{138}\right) + \frac{6,908.256}{3220} \]

\[= 639 \text{ psi (CT)} < f_c = 930 \text{ psi} \quad \therefore \text{OK} \]

b) **C-LINE METHOD:**

\[P_e = 221,850 \text{ lb} \]

\[M_t = 6,908.256 \text{ in-lb} \]

\[g = \frac{M_t}{P_e} = 31.1 \text{ in} \]

\[e' = a - e = 31.1 - 13.12 = 18.02 \text{ in} \]

\[f_t^t = -\frac{P_e}{A_c} \left(1 + \frac{e' \cdot C_t}{y^2}\right) = -\frac{221,850}{369} \left(1 + \frac{18.02 \times 20.17}{138}\right) \]

\[= -2183 \text{ psi (CC)} \]

\[f_b = -\frac{P_e}{A_c} \left(1 - \frac{e' \cdot C_b}{y^2}\right) = -\frac{221,850}{369} \left(1 - \frac{18.02 \times 20.17}{138}\right) \]

\[= 639 \text{ psi (CT)} \]

c) **LOAD BALANCING METHOD:**

\[P' = P_e = 221,850 \text{ lb} \]

\[a = 13.12 \text{ in} = e = 1.09 \text{ ft} \]

\[W_b = \frac{8 \cdot P' \cdot a}{12} = \frac{8 \times 221,850 \times 1.09}{34.5^2} = 1678.5 \text{ kips} \]
\[W_t = 384 + 3600 = 3984 \text{ plF} \]
\[W_{ub} = 3984 - 1678.5 = 2305.41 \text{ plF} \]
\[M_{ub} = \frac{W_{ub} \cdot x^2}{8} = \frac{2305.41 \cdot (34)^2}{8} \approx 3997581 \text{ in}-\text{lb} \]
\[f_t = -\frac{P}{A_c} - \frac{M_{ub}}{S_t} = -\frac{221.850}{369} - \frac{3997581}{2527} = -2183 \text{ psi} \]
\[f_b = -\frac{P}{A_c} + \frac{M_{ub}}{S_b} = -\frac{221.850}{369} + \frac{3997581}{3220} = 639 \text{ psi} \]
\[< f_t = 930 \text{ psi} = \text{OK} \]
2) S. I. System: =

a) Basic Concept: =
Assume that ten 12.7 mm dia seven wire strand tendons are used to prestress.

i) Initial Conditions at Prestressing:

\[A_p = 10(99) = 990 \text{ mm}^2 \]
\[P_i = A_p f_p = 990(130.3) = 1290 \text{ kN} \]
\[P_e = 990(1000) = 990 \text{ kN} \]

The midspan self-weight dead load moment
\[M_D = \frac{W_D l^2}{8} = \frac{5.60 (10.4)^2}{8} = 75.7 \text{ kN-m} \]

\[f_t = \frac{P_i}{A_c} \left(1 - \frac{e_c t}{y^2}\right) - \frac{M_D}{S_t} \]
\[= \frac{1290}{2361} \left(1 - \frac{3.33 (51.2)}{891}\right) - \frac{75.7 \times 10^2}{41410} = 3.1 \text{ MPa} \]

\[f_b = \frac{P_e}{A_c} \left(1 + \frac{e_c b}{y^2}\right) + \frac{M_D}{S_b} = \frac{1890}{2361} \left(1 - \frac{3.33 (51.2)}{891}\right) \]
\[+ \frac{75.7 \times 10^2}{52766} = 12.1 \text{ MPa} < 19.9 \text{ MPa} \quad \therefore \ \text{OK} \]

Final Conditions at Service Load: =
The midspan moment due to live load is
\[M_L = \frac{52.6 (10.4)^2}{8} = 711 \text{ kN-m} \]
\[M_T = 75.7 + 711 = 786.7 \text{ kN-m} \]

\[f_t = -\frac{P_e}{A_c} \left(1 - \frac{e_c t}{y^2}\right) - \frac{M_T}{S_t} \]
\[
\frac{-990}{2381} \left(1 - \frac{33.3 \times 51.2}{891}\right) - \frac{787 \times 10^2}{41410} = -15.1 \text{ MPa (C)} \leq f_c = 18.6 \text{ MPa} \quad \text{OK.}
\]

\[
f_b = \frac{-990}{2381} \left(1 + \frac{33.3 \times 40.2}{891}\right) - \frac{787 \times 10^2}{52766}
\]

\[
= 4.5 \text{ MPa (T)} \leq f_c = 6.4 \text{ MPa (T)} \quad \text{OK.}
\]

b) **C-LINE METHOD:**

\[P_e = 990 \text{ KN}\]

\[M_T = 787 \text{ KN-m}\]

\[a = \frac{787}{990} = 0.795 \text{ m}\]

\[e' = a - e = 79.49 - 33.3 = 46.19 \text{ cm}\]

\[
f_T = \frac{-990 \text{ KN}}{2381 \text{ cm}^2} \left(1 + \frac{46.19 \times 51.2}{891}\right) \approx 15.1 \text{ MPa (C)}
\]

\[
f_b = \frac{-990 \text{ KN}}{2381 \text{ cm}^2} \left(1 - \frac{46.19 \times 40.2}{891}\right) = 4.5 \text{ MPa (T)}
\]

c) **LOAD BALANCING METHOD:**

\[P' = P_e = 990 \text{ KN}\]

\[a = 33.3 \text{ cm} = e\]

\[W_b = \frac{8P' a}{L^2} = \frac{3(990) 	imes 33.3}{100} = 24.38 \text{ KN/m}\]

\[W_{ub} = 52.6 + 5.6 - 24.38 = 33.82 \text{ KN/m}\]

\[M_{ub} = \frac{W_{ub} \times L^2}{6} = \frac{33.82 \times (40.4)^2}{6} = 457.25 \text{ KN-m}\]
\[f' = - \frac{P'}{A} \frac{M_{ub}}{S_t} = \frac{-990}{2381} - \frac{457.25 \times 10^2}{41410} = 15.1 \text{MPa} \]

\[f_b = - \frac{P'}{A} + \frac{M_{ub}}{S_b} = \frac{-990}{2381} + \frac{457.25 \times 10^2}{52766} = 4.5 \text{MPa} \]

\[\leq f_t = 6.4 \text{MPa} \]

\[\therefore 0 \leq \]
1.3 A simply supported pretensioned pretopped double T-beam for a floor has a span of 70 ft (21.3 m) and the geometrical dimensions shown in Figure P1.3. It is subjected to a gravity live-load intensity $W_L = 480$ psf (7 kN/m), and the prestressing tendon has an eccentricity at midspan of $e_c = 19.96$ in. (494 mm). Compute the concrete extreme fiber stresses in this beam at transfer and at service load, and verify whether they are within the permissible limits. Assume that all permissible stresses and materials used are the same as in example 1.1. The section properties are:

<table>
<thead>
<tr>
<th>Section Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Untopped</td>
<td></td>
</tr>
<tr>
<td>$A_c = 1185$ in.2</td>
<td></td>
</tr>
<tr>
<td>$I_c = 109,621$ in.4</td>
<td></td>
</tr>
<tr>
<td>$C_b = 25.65$ in.</td>
<td></td>
</tr>
<tr>
<td>$C_t = 8.35$ in.</td>
<td></td>
</tr>
<tr>
<td>$S_b = 4274$ in.3</td>
<td></td>
</tr>
<tr>
<td>$S^t = 13,128$ in.3</td>
<td></td>
</tr>
<tr>
<td>$W_D = 1234$ psf</td>
<td></td>
</tr>
<tr>
<td>$V/S = 2.45$ in.</td>
<td></td>
</tr>
</tbody>
</table>

Figure P1.3.

Design the prestressing steel needed using 1-in. dia stress-relieved seven-wire strands. Use the three methods of analysis discussed in this chapter in your solution.

Solution:

- $l = 70$ ft
- $W_L = 480$ lb/ft
- $e_c = 19.96$ in
- $f'_c = 6000$ psi
- $f_c = 2700$ psi
- $f_pu = 270,000$ psi
- $f_{pi} = 189,000$ psi
- $f_{pe} = 145,000$ psi
- $A_c = 1185$ in.2
- $I_g = 109,621$ in.4
- $C_b = 25.65$ in.
- $C_t = 8.35$ in.
- $S_b = 4274$ in.3
- $S^t = 13,128$ in.3
- $W_D = 1234$ lb/ft
- $V/S = 2.45$ in.
Assume 16 - \(\frac{4}{2} \)" dia. seven wire tendons are used.

Initial Conditions @ Prestressing:

\[
A_{ps} = 16 \times 0.153 = 2.45 \text{ in}^2
\]

\[
P_i = A_{ps} \cdot F_{pi} = 2.45 \times 189,000 = 463,050 \text{ lb}
\]

\[
P_e = A_{ps} \cdot F_{pe} = 2.45 \times 145,000 = 355,250 \text{ lb}
\]

Midspan self-wt. D.L. moment

\[
M_B = \frac{w1^2}{8} = \frac{1234 \times (70)^2}{8} \times 12 = 9,069,900 \text{ in-lb}
\]

\[
f_t = \frac{p_i (1 - \frac{e_t}{r^2})}{A_e} \cdot \frac{M_B}{L} = -\frac{463,050}{1185} \left(1 - \frac{19.96 \times 25.65}{92.5}\right) \frac{9,069,900}{13,128}
\]

\[= 313.31 - 690.88 = -377.57 \text{ psi (CC)}\]

\[
F_b = -\frac{463,050}{1185} \left(1 + \frac{19.96 \times 25.65}{92.5}\right) + \frac{9,069,900}{4274}
\]

\[= -431.4 \text{ psi (CC)}\]

Assuming \(f_{ci}' = 4800 \text{ psi} \)

\[f_{ci} = 0.6 f_{ci}' = 2880 \text{ psi}\]

then \(-431.4 < -377.57 < f_{ci} < 4800\) psi

so O.K.

Final Condition @ Service Load:

\[
M_L = \frac{480(70)^2}{8} \times 12 = 3,528,000 \text{ in-lb}
\]

\[
M_T = 3,528,000 + 9,069,900 = 12,597,900 \text{ in-lb}
\]
\[f_t^* = -\frac{P_e}{A_e}\left(1 - \frac{E \cdot c_t}{\gamma^2}\right) - \frac{M_T}{St} = -\frac{355,250}{1185}\left(1 - \frac{2.59 \times 8.35}{92.5}\right) - \frac{12,597,900}{13,128} \]
\[= 69,097,900 - 719.2 \text{ psi (cc)} < f_e \]

\[f_b = -\frac{355,250}{1185}\left(1 + \frac{12.597,900}{92.5}\right) + \frac{12,597,900}{4274} \]
\[= -1195.9 + 2966 = 1000 \text{ psi (CT)} > f_e = 930 \text{ psi} \]

\[\therefore \text{ N.G.} \]

Try increasing to 20 - 1/2" dia. SWS tendons.

\[A_{ps} = 0.153(20) = 3.06 \text{ in}^2 \]
\[P_i = 3.06 \times 189,000 = 578,340 \text{ lb.} \]
\[P_e = 3.06 \times 145,000 = 443,700 \text{ lb.} \]

Initial Conditions @ Prestress:

\[f_t^* = -\frac{578,340}{1184}\left(1 - \frac{19.96 \times 8.35}{92.5}\right) - \frac{9,069,900}{13,128} = -299 \text{ psi (cc)} \]
\[f_b = -\frac{578,340}{1184}\left(1 + \frac{19.96 \times 25.65}{92.5}\right) + \frac{9,069,900}{4274} = -1070 \text{ psi (cc)} \]

Final Conditions @ Service Load:

\[f_t^* = -\frac{443,700}{1184}\left(1 - \frac{19.96 \times 8.35}{92.5}\right) - \frac{12,597,900}{13,128} = -639 \text{ psi (cc)} \]
\[f_b = -\frac{443,700}{1184}\left(1 + \frac{19.96 \times 0}{92.5}\right) + \frac{12,597,900}{4274} = 498 \text{ psi (CT)} \]

\[\therefore f_e = 930 \text{ psi} \]

\[\therefore \text{ O.K.} \]
1.4 A T-shaped simply supported beam has the cross section shown in Figure P1.4. It has a span of 36 ft (11 m), is loaded with a gravity live-load unit intensity \(W_g = 2,500 \text{ plf (36.5 kN/m)} \), and is prestressed with twelve \(\frac{1}{2} \)-in.-dia (twelve 12.7-mm-dia) seven-wire stress-relieved strands. Compute the concrete fiber stresses at service load by each of the following methods:

(a) Basic concept
(b) C-line
(c) Load balancing

Assume that the tendon eccentricity at midspan is \(e_e = 9.6 \text{ in. (244 mm)} \). Then given that

\[
\begin{align*}
f'_c &= 5,000 \text{ psi (34.5 MPa)} \\
f_e &= 12\sqrt{f'_c} = 849 \text{ psi (5.9 MPa)} \\
f_{pe} &= 165,000 \text{ psi (1,138 MPa)}
\end{align*}
\]

the section properties are as follows:

\[
\begin{align*}
A_e &= 504 \text{ in}^2 \\
I_e &= 37,059 \text{ in}^4 \\
r^2 &= I_e/A_e = 73.5 \text{ in}^2 \\
c_b &= 12.43 \text{ in.} \\
S_b &= 2,981 \text{ in}^3 \\
S' &= 2,109 \text{ in}^3
\end{align*}
\]

\[
\begin{align*}
A_{ps} &= \text{twelve} \frac{1}{2} \text{-in.-dia, seven-wire stress-relieved strands} \\
W_D &= 525 \text{ plf} \\
e_e &= 9.6 \text{ in.}
\end{align*}
\]

![Figure P1.4.](image_url)

\[
\text{Solution}:=
\]

a) Basic Concept Method:

\[
\begin{align*}
A_{ps} &= 12 \times 0.153 = 1.836 \text{ in}^2 \\
P_e &= A_{ps} \cdot f_{pe} = 1.836 \times 165,000 = 302,940 \text{ lb} \\
M_b &= 525 \left(\frac{36}{b} \right)^2 \times 12 = 1,020,600 \text{ in-lb} \\
M_L &= 2500 \left(\frac{36}{b} \right)^2 \times 12 = 4,860,000 \text{ in-lb} \\
M_T &= M_D + M_L = 5,880,600 \text{ in-lb}
\end{align*}
\]
CONCRETE FIBER STRESSES AT SERVICE LOAD

\[
f^t = - \frac{P_e}{A_c} \left(1 - \frac{e \cdot C_t}{g^t} \right) - \frac{M_t}{S^t} \\
= - \frac{302,940}{504} \left(1 - \frac{9.6 \times 1.757}{73.5} \right) - \frac{5,880,600}{2,109} \\
= -2,010 \text{ psi (comp.)} \leq f_c = 0.45 \times 5000 \text{ psi} \quad \therefore \text{OK.}
\]

\[
f^b = - \frac{P_e}{A_c} \left(1 + \frac{e \cdot C_b}{g^b} \right) + \frac{M_t}{S_b} \\
= - \frac{302,940}{504} \left(1 + \frac{9.6 \times 12.43}{73.5} \right) + \frac{5,880,600}{2,981} \\
= 396 \text{ psi (CT)} \leq f_t = 849 \text{ psi} \quad \therefore \text{OK.}
\]

b) C-LINE METHOD:

\[
e' = a - e \quad \text{where} \quad a = \frac{M_t}{P_e} = \frac{5,880,600}{302,940}
\]

\[
\therefore e' = 19.41 - 9.6 = 9.81'' = 19.41''
\]

CONCRETE FIBER STRESSES AT DESIGN LOAD:

\[
f^t = - \frac{P_e}{A_c} \left(1 + \frac{e' \cdot C_t}{g^t} \right) = - \frac{302,940}{504} \left(1 + \frac{9.81 \times 1.757}{73.5} \right) \\
= -2010 \text{ psi (CC)} \leq f_c = 2250 \text{ psi} \quad \therefore \text{OK.}
\]

\[
f^b = - \frac{P_e}{A_c} \left(1 - \frac{e' \cdot C_b}{g^b} \right) = - \frac{302,940}{504} \left(1 - \frac{9.81 \times 12.43}{73.5} \right) \\
= 396 \text{ psi (CT)} \leq f_t = 849 \text{ psi}.
\]
C. LOAD BALANCING METHOD:

\[P' = P_e = 302,940 \text{ lbs.} \]

\[a' = e = 9.6'' = 0.8 \text{ ft.} \]

Balancing load \(W_b = \frac{8P'a'}{I^2} = \frac{8 \times 302,940 \times 0.8}{(36)^2} = 1496 \text{ plf.} \]

Unbalanced load = \(W_b + W_L - W_b \)

= 525 + 2500 - 1496 = 1529 \text{ plf.} \]

\(\therefore \) Unbalanced moment, \(M_{ub} = 1529 \times \frac{(36)^2 \times 12}{8} = 2972376 \text{ in-lb.} \]

CONCRETE FIBER STRESSES AT SERVICE LOAD:

\[f_t = -\frac{P'}{A_c} - \frac{M_{ub}}{S_t} = -\frac{302,940}{504} - \frac{2,972,376}{2,109} \]

= -2,010 \text{ psi (comp)} < f_c \quad \therefore \text{OK.} \]

\[f_b = -\frac{P'}{A_c} + \frac{M_{ub}}{S_b} = -\frac{302,940}{504} + \frac{2,972,376}{2,981} \]

= 3.96 \text{ psi (tens)} < f_c = 849 \text{ psi} \]

\(\therefore \text{OK.} \]

CONCLUSION:

All 3 METHODS GAVE THE SAME RESULTS.
1.5 Solve problem 1.4 if $f_c = 7,000$ psi (48.3 MPa) and $f_{pe} = 160,000$ psi (1,103 MPa).

Solution:

A) Basic Concept Method:

\[
Pe = 1.836 \times 160,000 = 293,760 \text{ lbs}.
\]

\[
f_t = \frac{Pe}{Az} \left[1 + e \cdot \frac{ct}{r^2}\right] - \frac{M_t}{st}
\]

\[
= -\frac{293,760}{504} \left(1 - \frac{9.6 \times 17.57}{73.5}\right) - \frac{5,880,600}{2,981}
\]

\[
= -2,034 \text{ psi} \leq f_c = 3,150 \text{ psi}.
\]

\[\text{OK.}\]

\[
f_b = \frac{-293,760}{504} \left(1 + 9.6 \times 12.43\right) + \frac{5,880,600}{2,981}
\]

\[
= 443.6 \text{ psi} \leq f_c = 1,000 \text{ psi} \quad \therefore \text{OK.}
\]

B) C-Line Method:

\[
a = \frac{M_t}{Pe} = \frac{5,880,600}{293,760} = 20.02 \text{ in}
\]

\[
e' = a - e = 20.02 - 9.60 = 10.42 \text{ in}
\]

\[
f_t = \frac{Pe}{Az} \left(1 + e' \cdot \frac{ct}{r^2}\right)
\]

\[
= -\frac{293,760}{504} \left(1 + 10.42 \times 17.57\right) = -2,034 \text{ psi} \leq f_c = 3,150 \text{ psi}
\]

\[
f_b = \frac{-293,760}{504} \left(1 - 10.42 \times 12.43\right) = 443 \text{ psi} \leq 1,000 \text{ psi}.
\]
c) **Load Balancing Method:**

\[
M_{ub} = 5,880,600 - 293,760 \times 9.6
\]

\[
= 3,060,504 \text{ in-lb}
\]

\[
f_t^* = -\frac{Pe}{Ac} - \frac{M_{ub}}{S_t} = -\frac{293,760}{504} - \frac{3,060,504}{2,109}
\]

\[
= -2,034 \text{ psi} < 3,150 \text{ psi}
\]

\[
f_{bd} = -\frac{293,760}{504} + \frac{3,060,504}{2,981}
\]

\[
= 444 \text{ psi} < 1,000 \text{ psi}
\]

\[\text{OK.}\]

Beam Cross Section

Stress Distribution
3.1 A simply supported pretensioned beam has a span of 75 ft (22.9 m) and the cross section shown in Figure P3.1. It is subjected to a uniform gravitational live-load intensity \(W_L = 1,200 \text{ plf} \) (17.5 kN/m) in addition to its self-weight and is prestressed with 20 stress-relieved \(\frac{1}{8} \) in. dia. (12.7 mm dia) 7-wire strands. Compute the total prestress losses by the step-by-step method, and compare them with the values obtained by the lump-sum method. Take the following values as given:

- \(f'_c = 6,000 \text{ psi} \) (41.4 MPa), normal-weight concrete
- \(f'_t = 4,500 \text{ psi} \) (31 MPa)
- \(f_{pu} = 270,000 \text{ psi} \) (1,862 MPa)
- \(f_{pt} = 0.70 f_{pu} \)
- Relaxation time \(t = 5 \text{ years} \)
- \(e_c = 19 \text{ in.} \) (483 mm)
- Relative humidity \(RH = 75\% \)
- \(V/S = 3.0 \text{ in.} \) (7.62 cm)

Assume SD load = 30% LL.

SOLUTION:

\[
A_c = 2(30 \times 8) + 34 \times 6 = 684 \text{ in}^2
\]

\[
I_c = 2 \left[\frac{30 \times (8)^3}{12} + 30 \times 8 \times (21)^2 \right] + \frac{6(34)^3}{42}
\]

\[
= 2,332,892 \text{ in}^4
\]

\[
c_b = c_t = 25" \quad \gamma = \frac{I_c}{A_c} = 3.42 \text{ in}^2
\]

\[
S_b = S_t = \frac{I_c}{c_b} = 9,356 \text{ in}^2
\]

\[
W_b = \frac{684}{144} \times 0.15 = 0.7125 \text{ k/ft.}
\]

COMPUTATION OF LOSSES STEP BY STEP METHO

1) ANCHORAGE LOSS = 0

2) LOSS DUE TO ELASTIC SHORTENING

\[
P_f = 0.9 \quad P_i = 0.9 \times 3.06 \times (0.70 \times 270,000) = 520,506 \text{ lb.}
\]
\[M_d = 712.5 \left(\frac{75}{8} \right)^2 \times 12 = 6,011,719 \text{ in-lb.} \]

\[f_{\text{SC}} = -\frac{P_i}{A_e} \left(1 + \frac{e^2}{\gamma^2} \right) + \frac{M_{\text{DE}}}{I_c} \]

\[= -\frac{520,506}{684} \left(1 + \frac{(19)^2}{(34)^2} \right) + \frac{6,011,719 \times 19}{233,892} \]

\[= -1,076 \text{ psi}. \]

\[n = \frac{E_{\text{PS}}} {E_{\text{Cl}}} = \frac{28 \times 10^6}{2.7 \times 10^6} = 10.4 \]

\[\Delta f_{\text{PES}} = n. \frac{P_i}{E_{\text{PS}}} = 10.4 \times 1,076 = 11,190 \text{ psi}. \]

3) **Creep Loss** (CRC)

\[f_{\text{SCD}} = 0 \] \(K_C = 2 \times 0.8 = 1.6 \]

\[\Delta f_{\text{PCR}} = K_C (f_{\text{SC}} - f_{\text{SCD}}) \frac{E_{\text{PS}}}{E_{\text{Cl}}} = 1.6(0.1 - 0.076) \frac{28 \times 10^6}{3.2 \times 10^6} \]

\[= 15,064 \text{ psi}. \]

4) **Shrinkage Loss** (SCH):

\[K_{SH} = 1 \]

\[\Delta f_{\text{PSH}} = 6.2 \times 10^{-6} \times 1 \times 28 \times 10^6 (1 - 0.006 \times 3)(100 - 75) \]

\[= 4,707 \text{ psi}. \]

5) **Relaxation of Steel** (CR):

\[f'_{pi} = 0.7 \times 278,000 - (\Delta f_{\text{PES}} + \Delta f_{\text{PCR}} + \Delta f_{\text{PSH}}) \]

\[f'_{pi} = 189,000 - (11,190 + 15,064 + 4,707) \]

\[= 158,039 \text{ psi}. \]

\[t = 15 \times 365 \times 24 = 131,400 \text{ hrs}. \]
\[\Delta f_{Pr} = f'_{Pi} \left(\frac{\log t}{t_0} \right) \left(\frac{f'_{Pi}}{f_{Py}} - 0.55 \right) \]

\[= 158.039 \left(\frac{\log 131400}{40} \right) \left(\frac{158.039}{230000} - 0.55 \right) \]

\[= 11,093 \text{ psi}. \]

<table>
<thead>
<tr>
<th>STRESS LEVEL</th>
<th>STEEL STRESS (PSI)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER TENSIONING</td>
<td>189,000</td>
<td>100</td>
</tr>
<tr>
<td>ELASTIC SHORTENING LOSS</td>
<td>-11,190</td>
<td>-5.9</td>
</tr>
<tr>
<td>CREEP LOSS</td>
<td>-15,064</td>
<td>-8.0</td>
</tr>
<tr>
<td>SHRINKAGE LOSS</td>
<td>-4,707</td>
<td>-2.5</td>
</tr>
<tr>
<td>RELAXATION LOSS</td>
<td>-11,093</td>
<td>-5.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>145,946</td>
<td>77.7</td>
</tr>
</tbody>
</table>

% of total loss = 100 - 77.7 = 22.3 %

Lompsom Method:

From Table 3.1,

\[\Delta P_T = 33,000 \]

\[\therefore f_{pe} = 189,000 - 33,000 = 156,000 \text{ psi.} \]

% Difference between two methods.

\[= \frac{(156,000 - 145,946)}{189,000} = 4.8 \% . \]
3.2 Compute, by the detailed step-by-step method, the total losses in prestress of the 10ft (3.28m)-wide flanged double T-beam in Example 1.1 which has a span of 64 ft (19.5 m) for a steel relaxation period of 7 years. Use RH = 70% and V/S = 3.5 in. (8.9 cm), and solve for both pretensioned and post-tensioned prestressing conditions. Assume 3D load = 30% LL. In the post-tensioned case, assume that the total jacking stress prior to the friction and anchorage seating losses is 189,000 psi.

\[\text{SOLUTION :=} \]

1) PRETENSIONING CONDITIONS:

(i) ELASTIC SHORTENING LOSS \(E_S \):

\[P_j = 0.9 \; P_i = 0.9 \times 12 \times 0.153 \times 190,000 = 313,956 \; \text{psi.} \]

\[M_D = 494 \left(\frac{64}{2} \right)^2 \times 12 = 3,035,136 \; \text{in-lb.} \]

\[E_S = \frac{-313,956}{474} \left(1 + \frac{14.6^2}{45.44} \right) + \frac{3,035,136 \times 14.4}{21,450} \]

\[= -1,704 \; \text{psi.} \]

\[n = \frac{2.8 \times 10^6}{3.2 \times 10^6} = 0.75 \]

\[\therefore \Delta f_{pE_S} = n \Delta f_{E_S} = 0.75 \times 1,704 = 1,291 \; \text{psi.} \]

(ii) CREEP LOSS \(C_C \):

Assume \(W_{SD} = 200 \; \text{plf} \)

\[M_{SD} = 200 \times \left(\frac{64}{2} \right)^2 \times 12 = 1,228,800 \; \text{in-lb.} \]

\[f_{SCD} = \frac{M_{SD} \cdot E}{Lc} = \frac{1,228,800 \times 14.6}{21,450} = 63.6 \; \text{psi.} \]

\[k_C = 2 \times 0.6 = 1.60 \]

\[\Delta f_{pC_C} = k_C (f_{E_S} - f_{SCD}) \frac{E_{ps}}{E_c} = 1.6 \left(1,704 - 63.6 \right) \frac{28 \times 10^6}{2.8 \times 10^6} \]

\[= 13,888 \; \text{psi.} \]
(113) SHRINKAGE LOSS (SH):

\[K_{SH} = 1 \]
\[\Delta f_{PSH} = 8.2 \times 10^{-6} \times 1 \times 28 \times 10^6 \left(1 - 0.006 \times 3.5\right) \left(100 - 70\right) \]
\[= 5,442 \text{ PSI}. \]

(iv) RELAXATION OF STEEL (CR):

\[f'_{pi} = 190,000 - (14,910 + 13,888 + 5,442) \]
\[= 155,760 \text{ PSI}. \]

\[t = 7 \times 365 \times 24 = 61,320 \text{ HRS}. \]

\[\Delta f_{PR} = f_{pi}' \left(\frac{\log t}{40} \right) \left(\frac{f_{pi}'}{f_{py}} - 0.55 \right) \]
\[= 155,760 \left(\frac{\log 61320}{40} \right) \left(\frac{155,760}{220,000} - 0.55 \right) \]
\[= 11,782 \text{ PSI}. \]

(v) INCREASE OF STRESSES DUE TO 2" TOPPING:

\[f_{cd} = n \cdot f_{cpd} = \frac{28 \times 10^6}{28 \times 10^6} \times 836.4 = 8,364 \text{ PSI}. \]

Summary of Stresses:

<table>
<thead>
<tr>
<th>Stress Level</th>
<th>Steel Stress (PSI)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Tensioning</td>
<td>190,000</td>
<td>100</td>
</tr>
<tr>
<td>Elastic Shortening Loss</td>
<td>-14,910</td>
<td>-7.8</td>
</tr>
<tr>
<td>Creep Loss</td>
<td>-13,888</td>
<td>-7.3</td>
</tr>
<tr>
<td>Shrinkage Loss</td>
<td>-5,442</td>
<td>-2.9</td>
</tr>
<tr>
<td>Relaxation Loss</td>
<td>-11,782</td>
<td>-6.2</td>
</tr>
<tr>
<td>Increase in Stress (topping)</td>
<td>+8,364</td>
<td>+4.4</td>
</tr>
<tr>
<td>Total</td>
<td>152,342</td>
<td>80.2%</td>
</tr>
</tbody>
</table>

% of Total Loss = 100 - 80.2% ≈ 20%
LUMPED METHOD:

From Table 3.1, $\Delta P_T = 33,000$ psi.

$\therefore f_{pe} = 190,000 - 33,000 = 157,000$ psi.

% Difference in the Above two methods

$$= \frac{(157,000 - 152,342)}{190,000} \times 100 \approx 2.4\%$$

2. POST TENSIONING CONDITIONS:

(i) Friction Loss:

$$\Delta f_{pf} = -f_{pi} (\mu \alpha + KL)$$

$$= -190,000 \times (0.25 \times 0.152 + 0.001 \times 64)$$

$$= -19,360 \text{ psi}.$$

$$f_{pf} = 190,000 - 19,360 = 170,640 \text{ psi}.$$

(ii) Elastic Shortening (SH):

$$\Delta f_{psh} = 0$$

(iii) Creep Loss (CCR):

$$f_{sd} = 836.4 \text{ psi};$$

$$f_{s} = 0.9 \times 12 \times 0.153 \times 170,640 = 281,932 \text{ psi};$$

$$\Delta f_{pcr} = K_c R (f_s - f_{scd}) \frac{E_p}{E_c}$$

$$= -\frac{281,932}{474} \left(1 + \frac{(4.6)^2}{45.44}\right) + \frac{3,035,136 \times 14.6}{21,450}$$

$$= -1,319 \text{ psi}.$$

$$\therefore \Delta f_{pcr} = 1.6 \times 0.8 \times (1,319 - 836) \frac{28}{20} = 6,182 \text{ psi}.$$
iv) Shrinkage Loss (Δf_{PSH}):

\[
\Delta f_{PSH} = 8.2 \times 10^{-6} \times 0.45 \times 28 \times 10^{-6} \times (1 - 0.06 \times 35) (100 - 7)
\]

\[
= 2,449 \text{ psi}
\]

(v) Relaxation Loss (f_{PR}):

\[
Net f_p' = 170,620 - (6182 + 2449) = 161,989 \text{ psi}
\]

\[
f_{PR} = -161,989 \left(\frac{\log 61320}{10} \right) \left(\frac{161,989}{289000} - 0.55 \right)
\]

\[
= -14,449 \text{ psi}
\]

(vi) Increase in Stress due to Topping:

\[
f_{SD} = 8,364 \text{ psi (as before)}
\]

Summary of Stresses:

<table>
<thead>
<tr>
<th>Stress Level</th>
<th>Steel Stress (psi)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Tensioning</td>
<td>190,000</td>
<td>100</td>
</tr>
<tr>
<td>Friction Loss</td>
<td>-19,380</td>
<td>-10.0</td>
</tr>
<tr>
<td>Elastic Shortening Loss</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Creep Loss</td>
<td>-6182</td>
<td>-3.3</td>
</tr>
<tr>
<td>Shrinkage Loss</td>
<td>-2,449</td>
<td>-1.8</td>
</tr>
<tr>
<td>Relaxation Loss</td>
<td>-14,449</td>
<td>-7.6</td>
</tr>
<tr>
<td>Increase in Stress (Topping)</td>
<td>+ 8,364</td>
<td>+4.4</td>
</tr>
<tr>
<td>Total</td>
<td>155,904</td>
<td>82%</td>
</tr>
</tbody>
</table>

\[
% \text{ Total Loss} = 100 - 82 = 18\%
\]
From table 3.2, Lumped loss = 35,000 psi

\[f_{pe} = 190,000 - 35,000 = 155,000 \text{ psi} \]

\% Difference by the above 2 methods

\[\frac{(155,904 - 155,000)}{190,000} \times 100 = 0.48 \% \]
Compute, by the detailed step-by-step method, the total losses of prestress in the AASHTO 36-in. (91.4 cm)-deep beam used in Problem 1.1 and which has a span of 34 ft (10.4 m) for both the pretensioned and the post-tensioned case. Use all the data of Problem 1.1 in your solution, and assume that the relative humidity $RH = 70\%$ and the volume-to-surface ratio $V/S = 3.2$. Determine the steel relaxation losses at the end of the first year after erection and at the end of 4 years.

Solution:

1) **PRETENSIONING CONDITIONS**:

 a) **STAGE I: AFTER 1 YEAR**:

 i) **ELASTIC SHORTENING**:

 $P_i = 8 \times 0.153 \times 180,000 = 220,320$ psi.

 $M_0 = \frac{[384 \cdot (34)^2]}{6} \cdot 12 = 665,856$ in-lb.

 $P_f = 0.9 \times P_i = 198,288$ psi.

 $f_{cs} = \frac{198,288}{369} \left(1 + \frac{13.12^2}{438}\right) + \frac{665,856 \times 13.12}{50,979}

 = -1,036$ psi.

 $\therefore \Delta f_{PES} = \frac{26 \times 10^6}{2.7 \times 10^6 \times 1,036} = 10,744$ psi.

 ii) **CREEP LOSS (CR)**:

 $f_{SCR} = 0$.

 $\Delta f_{PCR} = K_{CR} (f_{cs} - f_{SCR}) \frac{E_p}{E_c}$

 $= 0.10362 \cdot \frac{28}{30.2} = 9.65$ psi.

 iii) **SHRINKAGE LOSS (SH)**:

 $\Delta f_{PSH} = 8.2 \times 10^{-6} \times 1 \times 28 \times 10^6 (1 - 0.06 \times 3.2) (100 - 70)$

 $= 5,566$ psi.

 iv) **RELAXATION OF STEEL LOSS (CR)**:

 $t = 1 \times 365 \times 24 = 8,760$ hrs.
\[f_{p_i} = 160,000 - (10,744 + 9,065 + 5,566) = 154,625 \text{ psi}. \]
\[\Delta f_{PR} = 154,625 \left(\frac{10 \log 8760}{10} \right) \left(\frac{154,625}{230,000} - 0.55 \right) = 7,454 \text{ psi}. \]

net \(f_{p_i}' = 154,625 - 7,454 = 147,171 \text{ psi}. \)

Stage II: After 4 yrs:

Relaxation of steel loss:
\[t = 4 \times 365 \times 24 = 35,040 \text{ hrs}. \]
\[\Delta f_{PR} = 147,171 \left(\frac{10 \log 35,040 - 10 \log 8760}{10} \right) \left(\frac{147,171}{230,000} - 0.55 \right) = 746 \text{ psi}. \]

Summary of stresses:

<table>
<thead>
<tr>
<th>Stress Level</th>
<th>Steel Stress (psi)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 4 yrs.</td>
<td>180,000</td>
<td>100</td>
</tr>
<tr>
<td>Elastic shortening loss</td>
<td>-10,744</td>
<td>-6.0</td>
</tr>
<tr>
<td>Creep loss</td>
<td>-9,065</td>
<td>-5.0</td>
</tr>
<tr>
<td>Shrinkage loss</td>
<td>-5,566</td>
<td>-3.1</td>
</tr>
<tr>
<td>Relaxation loss</td>
<td>-746</td>
<td>-4.6</td>
</tr>
</tbody>
</table>

% total loss = 100\% - 81.3\% = 18.7\%
\[\approx 19\%. \]
2. POST TENSIONED CONDITION:

STAGE I: AFTER 1 YR:

1) FRICTION LOSS:

\[\alpha = \frac{8 \times 13.12}{34 \times 12} = 0.26 \]

From table 3.7, \(\mu = 0.25 \), \(k = 0.001 \)

\[\Delta f_{PF} = -f_{pi} (\mu \alpha + k \ell) = -180,000 (0.25 \times 0.26 + 0.001) \times 34 \]

\[= -17,820 \text{ psi} \]

\[f_{pi} = 180,000 - 17,820 = 162,180 \text{ psi} \]

2) ELASTIC SHORTENING:

\[\Delta f_{PSH} = 0 \]

3) CREEP LOSS:

\[f_{cd} = 0 \]

\[P_j = 0.9 \times 8 \times 0.153 \times 162,180 = 178,657 \text{ lbs.} \]

\[f_{cs} = -\frac{178,657}{369} \left(1 + \left(\frac{13.12}{13.6} \right)^2 \right) + \frac{665,856 \times 13.12}{50,979} \]

\[= -917 \text{ psi} \]

\[\Delta f_{Per} = 1.6 \left(917 \right) \frac{28}{2.7} = 15,215 \text{ psi} \]

4) SHRINKAGE LOBS:

\[k_{SH} = 0.45 \]

\[\Delta f_{PSH} = 8.2 \times 10^{-6} \times 0.45 \times 28 \times 10^6 (1 - 0.06 \times 3.2) (100 - 70) \]

\[= 2,504 \text{ psi} \]

5) RELAXATION LOSS:

\[\text{Net } f'_p = 162,180 - (15,215 + 2,504) \]

\[= 144,461 \text{ psi} \]
STAGE III: AFTER END OF 2 YEARS:

\[f_{pc} = 148,971 \text{ psi} \]

\[t_1 = 720 \text{ hours} \]

\[t_2 = 2 \times 365 \times 24 = 17,520 \text{ hours} \]

\[\Delta f_{pc} = 148,971 \left(\frac{\log(17,520) - \log(720)}{10} \right) \left(\frac{148,971 - 0.55}{229,500} \right) \]

\[= 2,047 \text{ psi} \]

\[f_{pc} = 148,971 - 2,047 = 146,924 \text{ psi} \]

SUMMARY OF STRESSES:

<table>
<thead>
<tr>
<th>STRESS LEVEL</th>
<th>STEEL STRESS (psi)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER TENSIONING</td>
<td>189,000</td>
<td>100</td>
</tr>
<tr>
<td>ELASTIC SHORTENING LOSS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ANCHORAGE LOSS</td>
<td>-12,500</td>
<td>-6.6</td>
</tr>
<tr>
<td>FRICTIONAL LOSS</td>
<td>-15,814</td>
<td>-8.4</td>
</tr>
<tr>
<td>CREEP LOSS</td>
<td>-6,686</td>
<td>-3.5</td>
</tr>
<tr>
<td>SHRINKAGE LOSS</td>
<td>-3,590</td>
<td>-1.9</td>
</tr>
<tr>
<td>RELAXATION LOSS (S(3.928 + 3.459 + 2.047))</td>
<td>-8,534</td>
<td>-4.5</td>
</tr>
<tr>
<td>INCREASE DUE TO TOPPING</td>
<td>5053</td>
<td>2.7</td>
</tr>
<tr>
<td>FINAL STRESS (f_{pc})</td>
<td>146,924</td>
<td>77.8</td>
</tr>
</tbody>
</table>
3.4 Compute, by the detailed step-by-step method, the total prestress losses of the simply supported double T-beam of Example 3.9 if it was post-tensioned using flexible ducts for the tendon. Assume that the tendon profile is essentially parabolic. Assume also that all strands are tensioned simultaneously and that the anchorage slip $\Delta_A = \frac{6}{3} \text{ in.} (9.5 \text{ mm})$. All the data are identical to those of Example 3.8; the critical section is determined to be at a distance 0.4 times the span from the face of the support.

SOLUTIONS:

1) P.I. UNITS:

<table>
<thead>
<tr>
<th>Span = 70 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strands = 12</td>
</tr>
<tr>
<td>$f_{c'} = 5000 \text{ psi}$, lightweight</td>
</tr>
<tr>
<td>$f_{cu} = 3500 \text{ psi}$</td>
</tr>
<tr>
<td>$A_c = 615 \text{ in}^2$</td>
</tr>
<tr>
<td>$I_c = 59,720 \text{ in}^4$</td>
</tr>
<tr>
<td>$c_b = 21.98 \text{ in}$</td>
</tr>
<tr>
<td>$C_t = 10.02 \text{ in}$</td>
</tr>
<tr>
<td>$S_b = 2717 \text{ in}^3$</td>
</tr>
<tr>
<td>$S_t = 5960 \text{ in}^3$</td>
</tr>
<tr>
<td>$e_e = 12.96 \text{ in}$</td>
</tr>
<tr>
<td>$e_c = 18.73 \text{ in}$</td>
</tr>
<tr>
<td>$w_{D} = 4.91 \text{ plf}$</td>
</tr>
<tr>
<td>$w_{S-D} = 2.50 \text{ plf}$</td>
</tr>
<tr>
<td>$w_L = 40 \text{ psf}$</td>
</tr>
<tr>
<td>$R = 110 \text{ feet}$</td>
</tr>
</tbody>
</table>

A) ANCHORAGE SEATING LOSS:

$\Delta_A = \frac{3}{8} \text{ in.} = 0.375 \text{ in.}$

$L = 70 \text{ ft}$

$\Delta f_{PA} = \frac{\Delta A}{L} F_{ps} = \frac{0.375}{70 \times 12} \times 28 \times 10^6 = 12,500 \text{ psi}$
b) **ELASTIC SHORTENING:**

Since all jacks are simultaneously tensioned, \(\Delta f_{ps} = 0 \).

c) **FRICTIONAL LOSS:**

\[
\alpha = \frac{8y}{x} = \frac{8(18.73 - 12.98)}{70 \times 12} = 0.0548 \text{ rad.}
\]

From table 3.7, \(k = 0.001 \)

\(u = 0.25 \)

\(f_p = 189,800 \text{ psi} \).

\[
\Delta f_{pf} = f_p (u \alpha + k \cdot u)
\]

\[
= 189,800 \left(0.25 \times 0.0548 + 0.001 \times 70\right)
\]

\[
= 15,819 \text{ psi}.
\]

The stress remaining in the prestressed steel after all instantaneous losses is

\[
f_p' = 189,800 - 12,500 - 0 - 15,819
\]

\[
= 160,681 \text{ psi}.
\]

\[
P_i = A_{ps} \cdot f_p = 12.0 (0.153) (160,681)
\]

\[
= 29,930 \text{ lb}.
\]

STAGE I: STRESS AT TRANSFER:

a) **ANCHORAGE SEATING LOSS:**

Loss = 12,500 psi.

Net service = 160,681 psi.

b) **RELAXATION LOSS:**

\(t_1 = 0 \)

\(t_2 = 18 \)

\[
\Delta f_{pr} = 160,681 \left(\frac{10 \times 18}{10}\right) \left(\frac{160,681}{229,500} - 0.55\right)
\]

\[
= 3,028 \text{ psi}.
\]